Boltzmann Machines and Denoising Autoencoders for Image Denoising
نویسنده
چکیده
Image denoising based on a probabilistic model of local image patches has been employed by various researchers, and recently a deep (denoising) autoencoder has been proposed by Burger et al. [2012] and Xie et al. [2012] as a good model for this. In this paper, we propose that another popular family of models in the field of deep learning, called Boltzmann machines, can perform image denoising as well as, or in certain cases of high level of noise, better than denoising autoencoders. We empirically evaluate the two models on three different sets of images with different types and levels of noise. Throughout the experiments we also examine the effect of the depth of the models. The experiments confirmed our claim and revealed that the performance can be improved by adding more hidden layers, especially when the level of noise is high.
منابع مشابه
Boltzmann Machines for Image Denoising
Image denoising based on a probabilistic model of local image patches has been employed by various researchers, and recently a deep denoising autoencoder has been proposed in [2] and [17] as a good model for this. In this paper, we propose that another popular family of models in the field of deep learning, called Boltzmann machines, can perform image denoising as well as, or in certain cases o...
متن کاملA Connection Between Score Matching and Denoising Autoencoders
Denoising autoencoders have been previously shown to be competitive alternatives to restricted Boltzmann machines for unsupervised pretraining of each layer of a deep architecture. We show that a simple denoising autoencoder training criterion is equivalent to matching the score (with respect to the data) of a specific energy-based model to that of a nonparametric Parzen density estimator of th...
متن کاملOnline Semi-Supervised Learning with Deep Hybrid Boltzmann Machines and Denoising Autoencoders
Two novel deep hybrid architectures, the Deep Hybrid Boltzmann Machine and the Deep Hybrid Denoising Auto-encoder, are proposed for handling semisupervised learning problems. The models combine experts that model relevant distributions at different levels of abstraction to improve overall predictive performance on discriminative tasks. Theoretical motivations and algorithms for joint learning f...
متن کاملComparative Analysis of Image Denoising Methods Based on Wavelet Transform and Threshold Functions
There are many unavoidable noise interferences in image acquisition and transmission. To make it better for subsequent processing, the noise in the image should be removed in advance. There are many kinds of image noises, mainly including salt and pepper noise and Gaussian noise. This paper focuses on the research of the Gaussian noise removal. It introduces many wavelet threshold denoising alg...
متن کاملA Robust Image Denoising Technique in the Contourlet Transform Domain
The contourlet transform has the benefit of efficiently capturing the oriented geometrical structures of images. In this paper, by incorporating the ideas of Stein’s Unbiased Risk Estimator (SURE) approach in Nonsubsampled Contourlet Transform (NSCT) domain, a new image denoising technique is devised. We utilize the characteristics of NSCT coefficients in high and low subbands and apply SURE sh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1301.3468 شماره
صفحات -
تاریخ انتشار 2013